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ABSTRACT 
 

Ecology relies on collecting, integrating, and interpreting large volumes of diverse data, which 
remains a greater challenge for ecologists. Ecoinformatics could provide a solution that integrates 
agricultural and ecosystem sciences with computer sciences, geographic information sciences and 
quantitative methods. It provides tools and techniques for organizing and converting ecological data 
into information and knowledge. The use of ecoinformatics in entomology progresses from 
documenting pest and disease patterns and their colonization, pest impact on crop yield to the food 
web and farmer’s decision making. However, there are still numerous obstacles to overcome, 

Review Article 

https://doi.org/10.9734/arrb/2025/v40i12184
https://www.sdiarticle5.com/review-history/128871


 
 
 
 

Arya et al.; Ann. Res. Rev. Biol., vol. 40, no. 1, pp. 15-24, 2025; Article no.ARRB.128871 
 
 

 
16 

 

particularly when it comes to integrating ecoinformatics methods into mainstream research and 
education. Several technical and sociocultural challenges like collaboration with statisticians, 
developing data sources, data privacy concerns and developing mobile platforms for pest 
management remain some of the major hurdles. Since it is akin to experimental methodology, 
ecoinformatics-based techniques when well-integrated, give a more optimal solution to pest 
management problems than any single strategy employed independently. 
 

 
Keywords: Bulk data; interpretation; pest management; decision-making. 
 

1. INTRODUCTION 
 
Ecology is the field of biology concerned with the 
interactions of organisms with their physical 
environments. It is evolving quickly and 
progressively changing to a more open, liable, 
collaborative, interdisciplinary and data-intensive 
discipline. One of the biggest challenges facing 
ecologists is the discovery, integration, and 
evaluation of vast amounts of heterogeneous 
information. Ecoinformatics refers to ecological 
studies that use preexisting data. It suggests 
tools and methods for handling ecological data 
and transmuting the data into information and 
knowledge (Michener and Jones, 2012) This 
emerging field integrates ecosystem and 
agricultural sciences with quantitative methods, 
computer sciences and geographic information 
sciences. Entomologists and ecologists have 
been using these approaches for the past 75 
years, for example, locust outbreak patterns and 
colonization pathways to Europe were studied 
using historic maps, texts and museum records 
dating back to 300 CE (Worboys, 2022). Thus, a 
question arises, is there anything new in this 
approach? or are there any new features added 
to it? 
 
Ecoinformatics is a branch of big data research 
systems in which the data sets are characterized 
by high data variety, velocity and volume. In 
agricultural entomology, ecoinformatics can be 
used in recording pest and disease patterns, pest 
impact on crop yield and patterns in pesticide 
use, the efficacy of transgenic crops for pest 
control, landscape context effects on crop 
colonization by pests, beneficial insects, the 
efficacy of cultural controls and host-plant 
resistance, food web and farmer’s decision 
making (Rosenheim and Gratton, 2017). 
However, there are still numerous obstacles to 
overcome, particularly in terms of bringing 
ecoinformatics methods into mainstream 
research and education. Several technical and 
sociocultural challenges like collaboration with 
statisticians, developing data sources, data 
privacy concerns and developing mobile 

platforms for pest management remains as some 
of the major hurdles. Ecoinformatics is akin to an 
experimental methodology. Thus, when 
experimental, observational, and ecoinformatics-
based techniques are combined, they give more 
effective answers to pest control problems than if 
they are employed alone (Rosenheim et al., 
2011).  
 

2. FEATURES OF ECOINFORMATICS 
 
It mainly relies on the use of pre-existing data, 
which in the majority of cases are observational. 
Besides, It makes it possible to integrate data 
from various sources and access data with broad 
temporal and spatial scales. Thus, a large 
amount of data will be generated and 
ecoinformatics provides new tools for managing 
and analyzing these data. The features of data 
informatics lie in the characteristics of data 
sources, data set construction, their statistical 
considerations and finally the acceptance of 
research results. 
 
Data sources: Data required for studies could be 
collected from a variety of new and old 
information sources like private and public data 
repositories, passive surveillance and indirect 
sampling, citizen science and academic data 
(Rosenheim et al., 2011). Data can either be 
collected deliberately to solve a particular 
entomological question, or might be the by-
product of former sampling programs, with data 
being re-used to answer novel queries. Several 
regional, state, national and international 
agencies gather and store a range of 
entomological, environmental and agricultural 
data regularly. Some of the examples are; 
http://traps.ncipmc.org/, 
http://sba.ipmpipe.org/cgi-bin/sbr/public.cgi and 
https://datcpservices.wisconsin.gov/pb. Insect 
monitoring is conducted at the quarantine 
stations, by surveying agricultural producers for 
recording the population trends, the occurrence 
of new insect/ pathogen (Brown et al., 2014) and 
the sampling data collected as a part of 
integrated pest management by private pest 
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management consultants and agricultural 
cooperatives. As the data collection becomes 
gradually digital (Teacher et al., 2013), the 
availability of data about insects in agriculture is 
expected to expand intensely. The passive 
surveillance methods are generally used in the 
case of medical entomology through the disease 
occurrences recorded either by health agencies 

(Bisanzio et al., 2015) or through internet 
searches (Gluskin et al., 2014). Insects are 
monitored indirectly by tracing the consequences 
of their activities, such as the presence of 
excreta and damaged plants which allows the 
researchers to understand insect phenology, 
distributions or abundances. Data on pesticide 
use trends obtained through farmer 
questionnaires can also be used to infer pest 
activity (Larsen, 2013). 
 
Citizen science is the research partnership 
between scientists and the public to gather, 
discover and study the data about the natural 
world. The Internet has got a major role in 
connecting the amateur naturalists and scientists 
and citizen science works well for those insects 
which can easily be identified. For example, 
http://www.naba.org/butter_counts.html for 
butterflies, http://bugguide.net for insects and 
spiders, and https://www.bumblebeewatch.org 
for bumblebees. These portals enable an 
unprofessional naturalist to upload observations 
or images of animals or plants. The academic 
data already published by researchers stands as 
an additional source of information. Until recently 
it was difficult to obtain the data sets that were 
used in the analysis in published papers in it is 
raw form. Now several data sources are 
available like http://www.gbif.org, 
https://www.idigbio.org, http://vegbank.org, 
https://www.dataone.org and http://datadryad.org 
these would eventually extend the availability of 
experimental data rather than observational for 
ecoinformatics studies. 
 
Data set construction: Data collected through 
ecoinformatics differs from conventional research 
in quality, flexibility, privacy, quantity, and scale. 
Ecoinformatics data often show greater 
heterogeneity due to diverse sources and 
collection methods, whereas conventional 
research allows researchers superior control 
over data collection, quality, and uniformity, 
reducing bias. Additionally, conventional 
research provides flexibility for incorporating 
manipulations to study specific conditions of 
interest. This elasticity enables researchers to 
design experiments tailored to particular 

scenarios, making conventional methods 
advantageous for focused and controlled 
investigations. On the contrary, ecoinformatics 
data sets are mainly observational and hence are 
limited to studying only those practices that are 
already in use, not any novel methods or 
practices. In terms of data privacy, 
ecoinformatics studies are unattractive to the 
researchers because of the fear of getting 
scooped, spotting errors in the data, reduction in 
the number of publications and misinterpretation 
of data. Moreover, farmers might not be willing to 
share the data regarding crop details or on the 
yield or about pest management measures, as 
such information may be regarded as firmly 
proprietary (Cock et al., 2011). Experimental 
studies are least affected by the issue of privacy. 
 
Ecoinformatics studies still face challenges with 
data quality, privacy, and flexibility, but the vast 
amount of data that can be gathered is a 
tremendous advantage. Ecoinformatics studies 
can facilitate the collection of data in terms of 
terabytes or petabytes. In experimental studies, 
the amount of data generated is a limiting factor. 
The cost of data collection is also less in 
ecoinformatics studies, thus with the same 
amount more data could be procured (Gardiner 
et al., 2012). In data production, the temporal 
and spatial scales of the data are equally 
important. Certain studies cannot be undertaken 
on a small area and for shorter periods like the 
effect of climate change on pests and natural 
enemies, the effect of crop rotations on pest 
densities and the impact of landscape on pest 
colonization of crops. Ecoinformatics studies 
cover an average of 18-22 years, along with 
several multidecadal data sets (Rosenheim and 
Gratton, 2017). These are far lengthier than 
classic experimental studies in agricultural 
entomology. The spatial scale of ecoinformatics 
studies may range from local, continental or even 
universal level (Meehan and Gratton, 2015). 
 
Statistical considerations: Ecoinformatics 
studies with a huge amount of data set would 
create an impression of legitimacy and power, 
but these data are more vulnerable to selection 
bias, errors in measurement and unexplained 
confounding factors (Boyd and Crawford, 2012). 
Similarly, the relation between two variables has 
to be construed with caution as ecoinformatics 
approaches depend primarily on observational 
data. Only because a data set is huge, the 
proverb “correlation does not imply causation” 
cannot be rejected. Some of the hurdles that are 
encountered while working with ecoinformatics 
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are statistical power, bias, the number of factors 
examined, and mentioned, and correlation and 
causation. 
 
The use of big data sets gives the advantage of 
identifying small effect proportions even though 
the original data sets are noisy. Statistical power 
studies indicate that large sample sizes are 
required in the case of pest management 
research to resolve significant effects fruitfully 
(van der Voet and Goedhart, 2015). While 
comparing with the value of the crop, insecticides 
are commonly low-priced thus the farmers who 
are focused on profit maximisation will be 
interested in suppressing pest populations even 
under very low yield reduction. With conventional 
experimental studies, such small effects cannot 
be resolved normally(Rosenheim et al., 2011) but 
can be considered via bigger ecoinformatics data 
sets (Rosenheim and Meisner, 2013). However, 
care has to be taken in using a lesser ‘p’ value 
alone as adequate proof in rejection of a null 
hypothesis and establishing a significant 
outcome. Nonrandom selection of samples from 
a larger population stands as a major difficulty in 
interpretation and creates a platform for bias in 
the response studied. When pest management 
techniques are applied non-randomly to various 
plots or farmers, bias in selection frequently 
occurs. For example, in the case of cotton, 
progressive farmers would be the ones to adopt 
new cultivars of Bt earlier as compared with 
others. However, such farmers would be those 
who were likely to produce higher yields even 
without the yield increment facilitated by Bt.Thus 
making a spurious correlation between higher 
yield and Bt cotton (Kathage and Qaim, 2012), 
makes it hard to find out the exact relationship 
between yield and genetically modified crops. 
These biases are not accounted for generally, 
thus giving an erroneous representation of the 
average response of the population and affecting 
the interpretation (Siontis and Ioannidis, 2011). 
 
Experimental methods focus on a few 
manipulated factors, while ecoinformatics 
explores multiple factors and variables. However, 
the majority of ecoinformatics research restricts 
reactions to a single variable. Including many 
predictors and responses poses challenges, 
especially with multicollinearity, which creates 
interpretational issues that are difficult to resolve 
solely through statistical methods (Fieberg and 
Johnson, 2015). False correlations could arise 
from several other unrecognized and recognized 
sources. For example, both crop performance 
and pest densities could be influenced by 

variable weather conditions, building abundant 
opportunities for false correlations. Unrecognized 
(thus uncorrected) sources of false correlations 
are the biggest opponents of ecoinformatics 
studies, as they can result in serious errors of 
interpretation (Rosenheim and Gratton, 2017). 
 
In agricultural entomology, the key goal of 
ecoinformatics is to improve research-mediated 
recommendations that allow the farmers to 
undertake management actions that result in 
preferred outcomes (e.g., pest management). 
Farmers will get aware of the likely 
consequences of a particular action only with the 
knowledge of causal relationships. The 
drawbacks of observational studies can be 
bypassed with the power of a well-designed 
manipulative experiment. Thus, we can reject the 
proposal of most devoted exponents of big data 
approaches that “knowledge of correlation alone 
can fully replace knowledge of causation” as our 
major research goal (Mayer-Schönberger and 
Cukier, 2013). These reasons make 
ecoinformatics most valued when used in close 
association with experimental studies. 
 

3. ACCEPTANCE OF RESEARCH 
RESULTS 

 
While working with ecoinformatics 
methodologies, the research could be integrated 
with outreach as the independent consultants or 
farmers acts as the information source of data 
sets and they could be involved in research 
activities right from the beginning of a project. 
Thus, farmers will get more confidence in 
recommendations arising from the evaluation of 
their own data, rather than the study undertaken 
in a university plot (Cock et al., 2011). Another 
pitfall associated with experimental studies is that 
it is often executed under narrowly organized and 
agronomically optimal situations, whereas 
ecoinformatics works can cover the complete 
spectrum of commercial farming environments 
(Welch et al., 2010).  
 

4. DATA LIFECYCLE 
 
Knowledge is obtained by procurement of the 
data and by transforming these data into 
information that can be integrated into the body 
of scientific theories, facts and principles. The 
lifecycle of data can be explained through eight 
steps which may or may not be compulsory and 
that ultimately change the data into information 
and further knowledge. For example, if one is 
working with a project that focuses on data 
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collection only, they can skip steps, discovery 
and integration. Steps need not be in order and 
the stages are not essentially exclusive 
(Michener and Jones, 2012). 
 

1) Planning: In most projects, data planning is 
underutilized and not valued but it can 
augment research efficacy and save time. 
Explicit data organization plans are also 
required to satisfy the research proposal 
requirements of the sponsors. A data 
organization planning tool i.e. DMP Tool 
was developed by Digital Curation Center, 
the UK which helps a researcher in 
creating, revising and reviewing data. 
 

 
 

Fig. 1. Data life cycle in ecoinformatics 
(Michener and Jones, 2012) 

 
1) Collection: Collection and organisation of 

ecological data are mainly done by 
recording the field and laboratory 
observations manually, hand-held 
processors, programmed machines and 
with the help of satellites and sensor 
networks. Underwater, ground-based and 
aerial sensor networks encircling many 
sensors when pooled could provide access 
to tera to petabytes of data in a year. 
Examples of these networks are OOI 
(Ocean Observatories Initiative) and 
NEON (New environmental observing 
systems)(Cowles et al., 2010). 

2) Quality Assurance: Quality control or 
quality assurance denotes the process for 
avoiding mistakes from entering a data set 
that is used as a precautionary measure to 
guarantee data of high quality before 
collection and to uphold data quality all 
through and after data collection. Quality of 
data can be assured before collection of 

data by defining criteria for measurement 
units, formats and metadata, and also by 
allocating charge for data quality to an 
individual or a team. Integration of quality 
assurance with scientific workflow systems 
and data management systems has to be 
done to assess the data automatically for 
completeness of metadata as well as 
ensure data quality. One of the examples 
is the development of LTER NIS (Long 
Term Ecological Research Network 
Information System) to assess, treat and 
categorize data products into five levels, 
fluctuating from level-0 (slightly modified 
data) to level-4 (data that are gap-filled and 
semantically in sync to meet the 
requirements of precise data 
products)(Michener et al., 2011). 

3) Describe: Adequate information regarding 
the content, arrangement and framework 
of a data product could be obtained from 
metadata. Metadata normally explains the 
author, the reason for collecting data, the 
date in which data was created or 
collected, the location from which data was 
collected, the date on which it got modified 
and the data size (Michener, 2006). For 
ensuring reliability in the format and 
content of metadata, several tools and 
standards have been established. 

4) Preserve: Preservation of data includes 
depositing data as well as metadata in a 
data repository or data center where the 
confirmation, multiplication and curation of 
data could be done on time (Marcial and 
Hemminger, 2010). A data center 
frequently supports a specific field of study 
that may be associated with a researcher, 
sponsor, region, or organization. Data 
centers provide services like peer review of 
products, help desk and Digital Object 
Identifiers (DOI) to the stakeholders for 
correct identification and citation of the 
data. For example, Oak Ridge National 
Laboratory Distributed Active Archive 
Center for Biogeochemical Dynamics is 
providing DOI to facilitate tracking and 
using data products as a facility to 
research sponsors as well as data 
providers (Cook, 2008). 

5) Discover: Researchers face significant 
challenges in data discovery when 
extending the temporal and spatial scales 
of their work. Key issues include the 
reluctance of individuals or institutions to 
share valuable data stored offline and the 
overwhelming number of irrelevant results 
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from simple searches, making relevant 
data difficult to identify. The first issue                 
can be solved by making the researcher 
and institutions recognize data as a 
valuable product of the scientific domain 
and thus should make those data 
reachable for the rest of the community in 
order to extend its use (Whitlock et al., 
2010). The second problem could be 
solved with the help of projects like 
DataONE, which are refined and user-
friendly search engines that save time for 
search as well as offer the facility to filter 
the search results or to pull out specific 
data according to one need (Michener et 
al., 2011). 

6) Integrate: Integrating multi-disciplinary data 
for large-scale ecological studies is vital 
but challenging, requiring significant time, 
cost, and effort to address methodology 
variations, data conversion, and semantic 
compatibility before analysis. In majority of 
the cases, integration of data is done 
manually, which is a large time-consuming 
process (Kelling et al., 2009). Several 
approaches are developing that could help 
in overcoming these challenges by 
facilitating semi-automation of data 
integration process. In contrast to the 
traditional data integration tools like Excel, 
which allows for manual data integration 
methods, semantic models offered by 
Extensible Observations Ontology (OBOE) 
and the Observations and Measurements 
could be used (Madin et al., 2007). 

7) Analyze: Several geospatial and statistical 
analyses, as well as modelling tools, are 
required for distinguishing ecological 
processes from each other because of 
their interconnections and complex nature 

(Michener and Jones, 2012). A wide range 
of statistical tools along with analytical and 
simulation models are being used by 
ecologists to find a conclusion for several 
ecological processes. Unfortunately,                    
data analysis tools and processes                      
are rarely documented in detail, with 
articles often providing only an outline of 
methods. Ecoinformatics aims to address 
this by using new methods to record 
processes leading to scientific 
interpretations comprehensively (Taylor et 
al., 2007). A complete and executable 
picture of procedures used in the                   
analysis could be obtained from scientific 
workflow systems such as Tavera, 

Pegasus, Kepler and VisTralis (Silva et al., 
2007). 
 

5. ECOINFORMATICS IN AGRICULTURAL 
ENTOMOLOGY 

 
Some of the agricultural entomology studies 
which have used ecoinformatics approaches are 
mentioned below. 
 
Recording Pest Distribution Patterns: Pest 
outbreak studies that show heterogeneity in both 
time and space could effectively be tracked with 
ecoinformatics approaches. Large volumes of 
data must be collected for insect dispersal 
investigations, especially over longer time and 
space spans. Academic, state and central 
agencies have been involved in coordinated data 
collection, some examples are the National 
Ecological Observatory Network and the National 
Science Foundation-funded Long-Term 
Ecological Research (LTER) sites (Bahlai et al., 
2015). Localized synchrony in insect populations 

(Valpine et al., 2010), long-standing variations in 
pest densities (Wang et al., 2015) and temporal 
and spatial scales of variations in population 
have been studied with ecoinformatics methods. 
Extensive spatial and temporal studies are vital 
while working with insect pests in the forest, for 
which various aerial surveys have been used 
(Allstadt et al., 2013). 
 
Efficiency of Genetically Modified Crops in 
Pest Management: The majority of the studies 
related to genetically modified crops are skewed 
towards Bt crops. Long-term spatial analysis of 
data sets showed that a noticeable local 
suppression of insect pest population has 
occurred as a result of large-scale adoption of Bt 
crops, for example, Ostrinia nubilalis in the US 
(Hutchison et al., 2010), Helicoverpa armigera 
and Pectinophora gossypiella in China (Wan et 
al., 2012). 
 
Effect of Landscape on Insect Pest 
Colonization on Crops: The influence of the 
surrounding landscape on insect pests colonizing 
crops were studied using ecoinformatics 
methods (Stack Whitney et al., 2016). Infestation 
and colonization of Ceratitis capitata in citrus 
orchards of Israel (Krasnov et al., 2019), 
Amyelois transitella moths in pistachio orchards 
(Higbee and Siegel, 2009),and the effect of 
potato storage on colonization by Premnotrypes 
spp. weevils on potatoes were studied in Andes 
(Parsa et al., 2012).  
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Impact of Pest on Crop Yield and Pesticide 
Use Pattern: Pest-yield relationships can be 
analyzed using expert data. One of the studies 
conducted on Lygus hesperus in cotton showed 
that the farmers of California were managing the 
pest sub-optimally. Early season yield loss 
occurred due to inadequate pest control, while 
unnecessary pesticide application in mid-season 
disrupted cotton’s natural tolerance to pest 
damage (Meisner et al., 2017). The activity of 
pests in agricultural landscapes can be indirectly 
measured with the pesticide use data. The 
effectiveness of traditional pest management 
measures under field conditions could also be 
analyzed with ecoinformatics methods (Parsa et 
al., 2012). Numerous studies have revealed that 
farmer variance, not regional differences, is what 
has caused diversity in pesticide use patterns. 
However, cautious statistical modifications for 
resolving problems of spatial autocorrelation are 
required, that would otherwise interfere with the 
actual effects caused by explanatory variables 

(Meehan and Gratton, 2015). 
 
Monitoring Beneficial Insects: The extensive 
monitoring of economically important insects, as 
well as natural enemies in agriculture, are being 
done since long back. The records in museum 
collections revealing the decline of particular 
groups of unmanaged bees were obtained 
(Bartomeus et al., 2013). Citizen science was 
used to gather continent-wide data on the 
distribution range of exotic coccinellids (Smyth et 
al., 2013) and the effect of varying agricultural 
practices on species turnover patterns of ladybird 
beetles over 24 years were studied (Bahlai et al., 
2015). These studies demonstrate the value of 
ecoinformatics in examining distribution and 
abundance trends, which necessitates long-term 
research. 
 
Food Webs: Tropical interactions occurring in 
different ecosystems remain extremely complex 
and understanding and such a system has 
always remained a major challenge for 
ecologists.  An initiative to build agricultural food 
webs automatically has been undertaken (Bohan 
et al., 2011). The atrophic web was built with 72 
nodes and 407 links by putting machine learning 
to already collected data on trophic interactions 
and by robotic text mining of available literature. 
Thus, revealing several novel and unpredictable 
trophic relations like intraguild predation of 
spiders and carabid beetles, which was later 
established with the support of molecular 
methods (Davey et al., 2013).  
 

Efficiency of Host-Plant Resistance and 
Cultural Control Method: The studies on the 
efficiency of host-plant resistance and cultural 
control measures in managing pest populations 
were also undertaken with the support of 
ecoinformatics. The level of orchard hygiene 
required in the almond orchard to reduce the 
pest (Amyelois transitella) damage below 
economic threshold levels was worked out 
(Higbee and Siegel, 2009). The study on traits in 
cassava (Manihot esculenta) varieties that 
influence the level of resistance and susceptibility 
to three pests were conducted for several 
decades (Parsa et al., 2015). Using 
ecoinformatics techniques, the effects of both 
one-year and multi-year crop rotation on pest 
infestation levels and production increase were 
examined (Chavas et al., 2014). 
 
Decision Making by Farmer: To provide a 
comprehensive assessment of the efficacy of 
pest management, experimental techniques 
would not be enough. To get a complete picture, 
one should take care of the decisions taken from 
the farmer’s side also, which can effectively be 
studied through ecoinformatics approach. These 
can be explained by a study conducted in China 
where they found that expectation of pest losses 
strongly influenced the pesticide use and the 
selection of pesticide was governed by its price 
and level of risk to workers. The studies also 
unveiled the inefficiency of extension personal in 
spreading awareness about pesticide 
management measures.  
 

6. DRAWBACKS  
 
Even though various ecoinformatics measures 
has arouse to tackle many of the issues, several 
socio-cultural and technical problems still exist. 
Increasing application literacy and awareness is 
one of the main sociocultural challenges 
encountered when putting ecoinformatics 
techniques into practice. Another one is the 
scarcity of funds for undertaking the research 
activity. Among the technical challenges, the 
difficulty in handling and processing such a huge 
(terabytes and petabytes) amount of data stands 
out as first. This issue can be solved by attaching 
high-performance software with the data 
resources and thereby processing the data sets 
before transporting. Another technical challenge 
is to develop innovative visualization methods 
that would reduce the labour, cost and time in 
analyzing such complex data at the same time 
reducing the error rate(Fox and Hendler, 2011). 
Also, more focus should be given to using 
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workflows and algorithms in order to analyze, 
assure and visualize data. 
 

7. FUTURE 
 
Ecoinformatics methods should be used along 
with experimental measures to test the 
hypothesis and establish the causal relations 

(Cock et al., 2011). This demands a backbone of 
statistics and computer applications, for which 
ecologists should collaborate with 
biostatisticians, engineers and computer 
scientists. Cooperation with biostatisticians will 
strengthen the interpretation of data and thus 
solve the challenges related to analysis (Isaac et 
al., 2014). Collaboration with computer scientists 
and engineers facilitates automation and thereby 
reduce the time and labour especially in 
monitoring and detection (Chen et al., 2014). 
Moreover, pest management and monitoring 
software could be spread rapidly through mobile 
platforms, which support uploading the 
observations as images and data and provide 
situation-specific management decisions (Cohen 
et al., 2008). Cyber infrastructure approaches 
could be tackled to facilitate the storage, retrieval 
and sharing of ecoinformatics data (Hampton et 
al., 2013). Data collection platforms with data 
collection protocols have to be developed in 
collaboration with the stakeholders in sub-
disciplines to standardize the researcher-
developed data sets (Kitchin and Lauriault, 
2015). 
 

8. CONCLUSION 
 
Ecoinformatics is an evolving arena that 
integrates ecology and agricultural studies and 
improves the study with the application of GI 
sciences, quantitative techniques and computer 
sciences. It can represent dynamic aspects of 
change. On the other hand, many hurdles remain 
especially in bringing ecoinformatics practices 
into mainstream research and education. 
Experimental, observational, and ecoinformatics 
based approaches if used together, can provide 
more efficient solutions to problems than using a 
single approach. 
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