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ABSTRACT 
 

The YOLOv series represents state-of-the-art technology for single-stage object detection, 
excelling in speed and accuracy. In many scenarios, it outperforms traditional two-stage detection 
frameworks, making it ideal for real-time applications. This study evaluates YOLOv11 model 
variants (n, s, m, i, x) on a custom dataset of 2,285 labelled images representing four delivery 
vehicle classes: FedEx, Other-Vehicles, UPS, and USPS-Truck. The dataset is meticulously 
curated to capture diverse delivery vehicle scenarios and split into training, validation, and test sets. 
Each variant was fine-tuned using uniform settings: 20 epochs, an input resolution of 640×640 
pixels, and a batch size of 16.  
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Performance was assessed using metrics such as mean Average Precision (mAP, a standard 
metric measuring detection accuracy) across Intersection over Union (IoU) thresholds from 50% to 
95% (a range defining the overlap between predicted and ground-truth bounding boxes), precision, 
recall, and inference speed on GPU and CPU. The results highlight trade-offs between model 
complexity and performance: smaller variants like YOLOv11-n achieved faster inference speeds 
(170.74 FPS on GPU and 5.86 ms on GPU), while larger models like YOLOv11-x excelled in 
detection accuracy and recall but at the cost of slower speeds (240.03 FPS on GPU and 4.17 ms 
on GPU). YOLOv11-s, for example, offered a balance with the highest FPS (1120.46 GPU FPS) 
but with moderate accuracy and recall. These findings demonstrate the adaptability of YOLOv11 
variants to varying application requirements, from high-speed real-time systems to scenarios 
prioritizing detection accuracy.  
This research advances object detection by providing a detailed performance benchmark for 
YOLOv11 variants. It offers practical insights for deploying YOLOv11 in diverse fields, including 
logistics, delivery tracking, and other domains requiring efficient and accurate object detection.  

 

 
Keywords: YOLO; YoloV11; object detection models; deep learning computer vision; neural Networks; 

dataset evaluation; model performance metrics; image processing real-time applications. 
 

1. INTRODUCTION 
 

Object detection is a critical task in computer 
vision, enabling machines to identify and localize 
objects in an image or video. In recent years, the 
YOLO (You Only Look Once) series has 
emerged as a cornerstone for real-time object 
detection, demonstrating state-of-the-art 
performance in various domains. The YOLO 
(You Only Look Once) series revolutionized 
object detection by reimagining it as a single 
regression problem. Traditional systems rely on 
complex pipelines, including region proposals, 
classification, and post-processing, which are 
computationally intensive and challenging to 
optimize. In contrast, YOLO uses a unified 
convolutional network to predict bounding boxes 
and class probabilities directly. This design 
enables real-time performance. YOLO’s 
simplicity and efficiency have made it a 
benchmark in object detection. Each iteration 
improves speed, accuracy, and scalability. It 
trains on full images, optimizing detection 
performance end-to-end. YOLO has been widely 
applied, including in autonomous systems and 

robotics, where fast and accurate object 
detection is critical (Redmon et al. 2015). 
 
This study investigates the latest iteration, 
YOLOv11, and its variants for object detection in 
the logistics industry, specifically for identifying 
delivery vehicles such as FedEx, UPS, USPS 
trucks, and other vehicles. By benchmarking 
YOLOv11 variants on a custom logistics dataset, 
we aim to provide insights into their suitability for 
domain-specific applications. 
 

1.1 The YOLO Series: A Paradigm Shift 
in Object Detection 

 
The YOLO series has transformed object 
detection with its single-stage detection pipeline, 
emphasizing speed without compromising 
accuracy. Unlike traditional two-stage 
approaches like Faster R-CNN, which separate 
object proposal generation and classification, 
YOLO combines these processes into a                
unified architecture, enabling real-time 
performance. 

 

 
 

Fig. 1. The YOLO Detection System. Processing images with YOLO is simple and 
straightforward. Our system (1) resizes the input image to 448 × 448, (2) runs a single 

convolutional network on the image, and (3) thresholds the resulting detections by the model’s 
confidence(Redmon et al. 2015) 
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Table 1. Yolov series models with their release date and importance 

 
Release Year Tasks Contributions Framework 

YOLO 2015 Object Detection, Basic 
Classification(Redmon et al. 2015). 

Single-stage object detector Darknet 

YOLOv2 2016 Object Detection, Improved 
Classification(Redmon et al. 2017). 

Multi-scale training, dimension 
clustering 

Darknet 

YOLOv3 2018 Object Detection, Multi-scale 
Detection(Redmon. 2018). 

SPP block, Darknet-53 
backbone 

Darknet 

YOLOv4 2020 Object Detection, Basic Object 
Tracking(Bochkovskiy et al. 2020). 

Mish activation, CSPDarknet-53 
backbone 

Darknet 

YOLOv5 2020 Object Detection, Basic Instance 
Segmentation (via custom 
modifications) (Mahendrakar. 
2023). 

Anchor-free detection, SWISH 
activation, PANet 

PyTorch 

YOLOv6 2022 Object Detection, Instance 
Segmentation(Li. 2022). 

Self-attention, anchor-free OD PyTorch 

YOLOv7 2022 Object Detection, Object Tracking, 
Instance Segmentation(Wang et al. 
2022). 

Transformers, E-ELAN 
reparameterisation 

PyTorch 

YOLOv8 2023 Object Detection, Instance 
Segmentation, Panoptic 
Segmentation, Keypoint 
Estimation(Verghese. 2024). 

GANs, anchor-free detection PyTorch 

YOLOv9 2024 Object Detection, Instance 
Segmentation(Wang. 2024). 

PGI and GELAN PyTorch 

YOLOv10 2024 Object Detection(Alif et al. 2024). Consistent dual assignments for 
NMS-free training 

PyTorch 

 
Key advancements through the YOLO series: 
 

• YOLOv1: Introduced in 2015, YOLOv1 
pioneered the single-shot detection 
framework, dividing the input image into a 
grid and predicting bounding boxes and 
class probabilities simultaneously 
(Redmon et al. 2015). 

• YOLOv2 and YOLOv3: Focused on 
improving accuracy with multi-scale 
detection, batch normalization, and feature 
pyramid networks(Redmon et al. 2018) 
(Khanam et al. 2024). 

• YOLOv4 and YOLOv5: Integrated 
advanced features like Cross Stage Partial 
(CSP) networks and Mosaic augmentation, 
offering a balance between speed and 
precision(Hussain et al. 2022)(Khanam et 
al. 2024). 

• YOLOv7 and YOLOv9: Pushed the 
boundaries with computational efficiency 
and transformer-based architecture, 
cementing YOLO's position as a leader in 
real-time object detection(Khanam et al. 
2024). 

• YOLOv11, the latest iteration, builds on 
this legacy, incorporating cutting-edge 
innovations in attention mechanisms, 
anchor-free detection, and transformer 
modules (Khanam et al. 2024). 

The above illustrates the progression of YOLO 
models, from their inception to the most recent 
versions. Each iteration has brought significant 
improvements in object detection capabilities, 
computational efficiency, and versatility for 
handling various computer vision tasks. This 
evolution highlights the rapid advancements in 
object detection technologies, with each version 
introducing innovative features and expanding 
the range of supported tasks. From YOLO’s 
ground-breaking single-stage detection to 
YOLOv10’s NMS-free training, the series has 
continuously pushed the boundaries of real-time 
object detection. The latest version, YOLOv11, 
builds on this legacy, further enhancing feature 
extraction, efficiency, and multi-task capabilities. 
In the following analysis, we will examine 
YOLOv11’s architectural innovations, including 
its improved backbone and neck structures, and 
assess its performance across tasks such as 
object detection, instance segmentation, and 
pose estimation. 
 

1.2 YOLOv11: State-of-the-Art Real-Time 
Object Detection 

 
YOLOv11 represents a leap forward in object 
detection, combining architectural innovations to 
optimize both accuracy and efficiency. With its 
modular design, YOLOv11 offers a suite of 
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model variants tailored to diverse computational 
environments and application needs. YOLOv11 
distinguishes itself through its enhanced 
adaptability, supporting an expanded range of 
CV tasks beyond traditional object detection. 
Notable among these are posture estimation and 
instance segmentation, broadening the model’s 
applicability in various domains. YOLOv11’s 
design focuses on balancing power and 
practicality, aiming to address specific challenges 
across various industries with increased 
accuracy and efficiency(Khanam et al. 2024). 
 
Key Features of YOLOv11: 
 

• Dynamic Convolution: Enhances feature 
representation by adapting convolutional 
kernels based on spatial and contextual 
cues. 

• Anchor-Free Mechanism: Eliminates the 
need for predefined anchor boxes, 
simplifying model training and improving 
performance on irregular objects. 

• Efficient Attention Mechanisms: Integrates 
lightweight attention layers to focus on 
critical regions of an image while reducing 
computational overhead. 

• Improved Training Strategies: Incorporates 
advanced augmentation techniques and 
loss functions for better generalization. 

 
Variants of YOLOv11: 
 

• YOLOv11-n (Nano) 
o Ultra-lightweight model designed for low-

power devices such as edge sensors and 
IoT applications. 

o Prioritizes speed over accuracy, making it 
suitable for environments with limited 
computational resources. 

• YOLOv11-s (Small) 
o Offers a balance between speed and 

accuracy, ideal for medium-scale 

applications like real-time drone 
surveillance. 

• YOLOv11-m (Medium) 
o General-purpose model that provides a 

trade-off between precision and 
computational efficiency. 

o Suitable for scenarios requiring moderate 
accuracy and resource usage. 

• YOLOv11-i (Intermediate) 
o Focuses on higher accuracy for detecting 

complex and smaller objects. 
o Suitable for use cases with moderate 

computational resources, such as on-
premises GPUs. 

• YOLOv11-x (Extreme) 
o The largest and most precise variant, 

designed for high-performance systems 
with ample computational power. 

o Excels in tasks requiring maximum 
accuracy, such as autonomous driving and 
high-resolution video analysis. 

 

1.3 The YOLOv11 Architecture 
 

The YOLO framework revolutionized object 
detection by introducing a unified neural network 
that simultaneously handles both bounding box 
regression and object classification. This 
integrated approach represented a major shift 
from traditional two-stage detection methods, 
providing end-to-end training capabilities through 
its fully differentiable design. The YOLO 
architecture consists of three key components. 
First, the backbone, which extracts features from 
the raw image data using convolutional neural 
networks to create multi-scale feature maps. 
Next, the neck component, which aggregates 
and refines feature representations across 
different scales. Finally, the head component, 
which generates the final outputs for object 
localization and classification based on the 
processed feature maps(Khanam et al. 2024). 
The basic  framework architecture is illustrated in 
the below Fig. 2. 

 

 
 

Fig. 2. Key architectural modules in YOLO11(Khanam et al. 2024). 



 
 
 
 

Kishor; Asian J. Res. Com. Sci., vol. 17, no. 12, pp. 108-122, 2024; Article no.AJRCOS.128004 
 
 

 
112 

 

1.4 Relevance of Object Detection in 
Logistics 

 
The logistics industry relies heavily on accurate 
and efficient object detection systems to optimize 
operations. Applications such as package 
tracking, delivery vehicle identification, and real-
time inventory monitoring are integral to 
maintaining streamlined supply chains. Detecting 
delivery vehicles, including FedEx, UPS, and 
USPS trucks, is particularly crucial for ensuring 
timely deliveries and operational efficiency. 
 
Despite advancements in object detection, 
domain-specific challenges persist: 
 

• Class Imbalance: Logistics datasets often 
contain skewed distributions of object 
classes, such as fewer examples of 
specific vehicle types. 

• Real-Time Constraints: The need for rapid 
processing in dynamic environments like 
warehouses and delivery hubs. 

• Variability in Appearance: Different lighting 
conditions, occlusions, and viewing angles 
can impact detection performance. 

 

This study evaluates YOLOv11 variants on a 
custom logistics dataset to address these 
challenges, benchmarking their performance 
across key metrics, including mAP (50-95), 
precision, recall, and inference speed. The 
findings aim to guide practitioners in selecting the 
most suitable YOLOv11 variant for logistics-
specific applications. 
 

2. METHODOLOGY 
 

In the section we discuss details of the dataset 
and models we have examined for the research.   
 

2.1 Dataset Overview 
 

For this study, we utilized the USPS-Merge 
dataset, which was sourced from the Roboflow 
Universe platform. This dataset was specifically 
curated for object detection tasks and contains 
images of vehicles associated with various 
logistics and postal services(Rimer. n.d.). The 
dataset includes four distinct vehicle classes, and 
it is divided into three main subsets: 
 

• Training Set: The training subset contains 
1637 labelled images, used to train the 
object detection models. These images 
contain vehicles belonging to the specified 
classes and are annotated with bounding 
boxes. These labels enable the models to 

learn the spatial location of each object in 
the image. 

• Validation Set: The validation subset 
contains 443 images, used during the 
training process for model evaluation and 
hyperparameter tuning. The validation set 
helps in adjusting the model parameters to 
avoid overfitting and to select the best-
performing model during training. 

• Test Set: The test subset consists of 205 
images. This dataset is kept separate and 
is used for final model evaluation and 
inference, ensuring that the evaluation 
results are unbiased and reflective of the 
model's real-world performance. 

 

The dataset comprises the following four 
classes: 
 

• USPS-Truck: This class includes images of 
vehicles used by the United States Postal 
Service (USPS), often characterized by a 
white and blue color scheme. These 
vehicles are crucial in the context of postal 
delivery and provide a diverse dataset for 
training the model to detect different 
logistics vehicles. 

• UPS: This class consists of images of UPS 
(United Parcel Service) delivery trucks. 
These vehicles are typically brown and are 
used for parcel delivery in various regions 
globally. They are another important class 
to distinguish in logistics-based object 
detection tasks.  

• Other-Vehicles: This class encompasses a 
variety of vehicles not related to specific 
postal or delivery services, such as 
personal cars, trucks, buses, and 
motorcycles. It serves to introduce diversity 
and background vehicles in the dataset, 
making the task more challenging for the 
object detection models.  

• FedEx: This class includes images of 
FedEx delivery trucks, commonly used in 
logistics for parcel delivery. FedEx vehicles 
are often characterized by their unique 
color schemes, including purple and 
orange branding. 

 

2.2 Training Configuration 
 

To ensure a consistent evaluation of different 
variants of the YOLOv11 architecture, we 
specified the following uniform configuration 
parameters for all models. The training 
configuration is designed to balance 
computational efficiency, model performance, 
and overfitting mitigation. 
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Fig. 3. Sample image of dataset: USPS-Truck, UPS, Other-Vehicles, FedEx (from left to right) 
(Rimer. n.d.). 

 

• Epochs: The model was trained for 20 
epochs, which were chosen based on 
empirical results from previous studies and 
the model's convergence behaviour during 
preliminary experiments. The relatively low 
number of epochs was adequate for fine-
tuning the model on the USPS-Merge 
dataset, given the dataset's size.  

• Image Size: The images were resized to a 
consistent resolution of 640 x 640 pixels 
for both training and validation. This image 
size strikes a balance between maintaining 
sufficient detail for the object detection task 
and ensuring the model can be trained 
efficiently without excessive computational 
requirements. The choice of image size is 
consistent with typical YOLO 
configurations, which can process images 
at this resolution while maintaining real-
time detection performance.  

• Batch Size: A batch size of 16 was 
selected as it is a common default for 
object detection tasks, offering a balance 
between memory usage and gradient 
stability. For YOLOv11-x, a batch size of 8 
was employed to accommodate 
computational cost constraints. While 
smaller batch sizes can result in noisier 
gradients, larger batch sizes may 
significantly increase memory consumption 
without providing proportional 
improvements in model performance. 

• Optimizer: The AdamW optimizer was 
selected for training. AdamW is an 
extension of the Adam optimizer that 
includes weight decay, which helps 
regularize the model and prevents 
overfitting by penalizing large weight 
values. This choice was made to improve 
convergence speed and model 
generalization. The learning rate was 
initially set to 0.00125, with a momentum 
parameter of 0.9. The optimizer 
automatically adjusted the learning rate 
during training, based on the loss 
function's gradient.  

• Learning Rate: The learning rate was 
automatically adjusted during training 
using the AdamW optimizer. This dynamic 
adjustment helps the model converge 
faster while maintaining stability. The initial 
learning rate of 0.00125 was chosen based 
on preliminary experiments and literature 
recommendations for similar tasks.  

• Uniform Configuration Across Models: All 
variants of YOLOv11 (n, s, m, i, x) were 
trained with identical hyperparameters to 
ensure that any performance differences 
observed during evaluation were due to 
architectural variations rather than 
changes in training configuration. This 
uniform approach allows for a fair 
comparison of the models' performance 
across different scales and capabilities. 

 
2.3 Data Augmentation 
 
To enhance the model's generalization 
capabilities and reduce overfitting, we employed 
a set of data augmentation techniques during 
training. These augmentations were applied 
randomly to the training images, introducing 
variability to the dataset and helping the model 
learn robust features. The following 
augmentations were applied: 
 

• Blur: This augmentation applied slight 
Gaussian blur to the images with a 
probability of 0.01. This helps the model to 
become more robust to motion blur or low-
quality images during inference.  

• MedianBlur: Similar to Gaussian blur but 
using median blurring with a probability of 
0.01. This transformation can help the 
model deal with noise or sharp edges in 
images.  

• ToGray: This transformation converts the 
images to grayscale with a probability of 
0.01, allowing the model to focus on spatial 
features rather than color, which can be 
useful in scenarios where color information 
is less important or unreliable.  
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• CLAHE (Contrast Limited Adaptive 
Histogram Equalization): This 
augmentation improves the contrast of the 
image with a probability of 0.01, helping 
the model focus on important features by 
making the images more visually 
distinguishable.  

 
These augmentations were chosen to simulate 
common variations encountered in real-world 
object detection tasks, where lighting conditions, 
image quality, and environmental factors can 
affect the visibility and appearance of objects. 
 

2.4 Evaluation Metrics 
 
To assess the performance of the trained models, 
several key evaluation metrics were used, 
including those specifically designed for object 
detection tasks. These metrics are essential for 
understanding how well each model variant 
performs in real-world conditions, balancing both 
accuracy and efficiency. 
 

• mAP (Mean Average Precision at IoU 50-
95): Mean Average Precision (mAP) is one 
of the most widely used metrics for 
evaluating object detection performance. It 
calculates the average precision at multiple 
Intersection over Union (IoU) thresholds, 
ranging from 0.5 to 0.95. This provides a 
comprehensive view of model performance 
across various levels of localization 
accuracy. A higher mAP score indicates 
better performance in both detecting 
objects and accurately localizing them.  

• Precision: Precision measures the 
accuracy of the positive predictions made 
by the model, defined as the ratio of true 
positives (TP) to the sum of true positives 
and false positives (FP). High precision 
ensures that the model does not 
misidentify other objects as part of the 
target classes. Precision is crucial when 
false positives could lead to unnecessary 
alerts or actions, as seen in autonomous 
driving or security applications. 

• Recall: Recall measures how well the 
model can detect all relevant objects, 
defined as the ratio of true positives to the 
sum of true positives and false negatives 
(FN). High recall ensures that the model 
does not miss any objects in the image. It 
is particularly important in applications 
where missing an object could lead to 
critical failures, such as detecting delivery 
vehicles in real-time.  

• Inference Speed (CPU ONNX - ms): 
Inference speed is measured in 
milliseconds per image and is crucial for 
real-time applications. Faster inference 
speeds are necessary for use cases where 
the model must operate within time 
constraints, such as autonomous vehicles 
or surveillance systems. The inference 
speed was measured using ONNX (Open 
Neural Network Exchange) format, which 
is optimized for fast deployment across 
various hardware platforms. 

• Confusion Matrix: The Confusion Matrix 
was used to evaluate the classification 
performance of the models in detail. It 
provides a summary of the true positives 
(TP), false positives (FP), true negatives 
(TN), and false negatives (FN) for each 
class. This allows for a deeper 
understanding of where the model is 
making errors, such as misclassifying UPS 
trucks as FedEx or missing objects from 
the USPS-Truck class. From the confusion 
matrix, several additional metrics can be 
derived, including:  

o F1-Score: The harmonic mean of precision 
and recall, offering a balanced measure of 
the model's performance.  

o Accuracy: The overall proportion of correct 
predictions made by the model across all 
classes.  

o Specificity: The ability of the model to 
correctly identify non-object regions, 
ensuring that the model does not make 
excessive false positive predictions. 

 
2.5 Training Process Overview 
 
The training process was carried out using 
TensorBoard for real-time monitoring of key 
performance metrics such as loss, mAP, and 
precision-recall curves. TensorBoard also 
provided insights into the model's architecture, 
allowing us to visualize the training process and 
adjust hyperparameters as needed. Additionally, 
Automatic Mixed Precision (AMP) was used 
during training, which enables faster training by 
using lower precision for certain operations 
without sacrificing model accuracy. This results 
in reduced memory usage and improved training 
throughput, especially on GPUs. 
 
By following this methodology, we ensured that 
the results of the study were robust and 
comparable across all YOLOv11 model         
variants. The next phase involves the detailed 
evaluation and comparison of the model variants 
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based on the performance metrics outlined 
above. 

 
3. EVALUATION 
 
In this section we have discussed outcomes of 
different variants of yolov11 models and 
compared performance matrices.  

 

Yolov11-n-model: The evaluation result shows 
both training and validation losses show 
consistent reduction, indicating better model 
convergence and performance metrics such as 
mAP, precision, and recall exhibit consistent 
growth, highlighting robust improvement in 
detection and classification capabilities over the 
20 epochs as shown above Fig. 4.

 
 

Fig. 4. Yolov11-n training result 
 

3.1 Loss Metrics 
 
Training Loss:  
 

• Box Loss: Gradual decline from 1.01035 (Epoch 1) to 0.70374 (Epoch 20), indicating improved 
bounding box localization.  

• Class Loss: Significant reduction from 2.49392 (Epoch 1) to 0.56846 (Epoch 20), reflecting 
enhanced object classification accuracy.  

• DFL Loss: Slight reduction from 1.20724 (Epoch 1) to 1.00522 (Epoch 20), suggesting better 
consistency in distribution focal loss.  

 
Validation Loss: 
 

• Box Loss: Decreases from 1.07546 (Epoch 1) to 0.80903 (Epoch 20), aligning with training loss 
improvements.  

• Class Loss: Drops notably from 2.36577 (Epoch 1) to 0.69375 (Epoch 20), showcasing better 
generalization.  

• DFL Loss: Gradual reduction from 1.19559 (Epoch 1) to 1.06223 (Epoch 20). Performance 
Metrics mAP (Mean Average Precision):  
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Performance Metrics: 
 

• mAP50: Significant improvement from 
0.46003 (Epoch 1) to 0.87071 (Epoch 20), 
demonstrating better detection at 50% IoU 
threshold.  

• mAP50-95: Steady increase from 0.32051 
(Epoch 1) to 0.71511 (Epoch 20), reflecting 
enhanced detection across IoU thresholds. 

• Precision: Improves from 0.54975 (Epoch 
1) to 0.86050 (Epoch 20), indicating fewer 
false positives over time.  

• Recall: Gains from 0.32155 (Epoch 1) to 
0.82393 (Epoch 20), reflecting better 

object detection coverage across              
images. 

 
Yolov11-s model: The model exhibits steady 
improvements across all metrics and losses, 
indicating stable training with a well-behaved loss 
curve. Both training and validation losses show a 
consistent downward trend, and the performance 
metrics (Precision, Recall, mAP) show a strong 
upward trend, suggesting that the model is 
progressively improving both in fitting the data 
and generalizing well on unseen data as shown 
in Fig. 5. 

 

 
 

Fig. 5. Yolov11-s training result 
 

3.2 Loss Metrics 
 

Training Loss: 
 

• Box Loss: The training box loss steadily decreases from 0.9623 in epoch 1 to 0.6809 in epoch 
20, showing a consistent improvement in the model's ability to fit the bounding boxes. 

• Class Loss: The training class loss decreases from 1.7943 in epoch 1 to 0.4948 in epoch 20, 
indicating better classification performance as training progresses. 

• DFL Loss: The training DFL (distribution focal loss) also shows a decreasing trend, from 1.1586 
in epoch 1 to 1.0037 in epoch 20, suggesting the model is improving its decision-making across 
epochs. 

 
Validation Loss: 
 

• Box Loss: The validation box loss decreases from 1.1029 in epoch 1 to 0.6097 in epoch 20, 
confirming that the model's generalization ability is improving over time. 
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• Class Loss: The validation class loss 
decreases from 1.4981 in epoch 1 to 
1.0571 in epoch 20, showing progress in 
classification performance. 

• DFL Loss: The validation DFL loss 
decreases from 1.3432 in epoch 1 to 
1.0644 in epoch 20, indicating 
improvements in handling difficult 
examples. 

 

Performance Metrics: 
 

• mAP@50: The mAP at 50% intersection-
over-union (IoU) improves from 0.5637 in 
epoch 1 to 0.9020 in epoch 20, indicating 
strong improvement in detection 
performance. 

• mAP@50-95: This metric shows a steady 
rise from 0.4013 in epoch 1 to 0.7435 in 
epoch 20, reflecting better performance at 
multiple IoU thresholds. 

• Precision: The precision increases from 
0.6781 in epoch 1 to 0.8845 in epoch 20, 
reflecting an improvement in the model’s 
ability to correctly identify positive            
samples. 

• Recall: Recall shows a similar trend, rising 
from 0.5051 in epoch 1 to 0.8534 in epoch 
20, which suggests better recall as training 
progresses. 

 
Yolov11-m model: The training of the “m” 
variant of the yolov11 model exhibits both the 
training and validation losses showing a steady 
decrease, which is a sign of stable learning and 
effective generalization. Key performance 
metrics like Precision, recall, and mAP metrics all 
show strong improvement across the epochs, 
suggesting that the model is not only learning but 
also generalizing well to unseen data as shown 
in Fig. 6. 

 

 
 

Fig. 6. Yolov11-m training result 
 

3.3 Loss Metrics 
 
Training Loss: 
 

• Box Loss: The training box loss decreases steadily from 1.0043 in epoch 1 to 0.7271 in epoch 
20, suggesting that the model is learning to improve its bounding box predictions over time. 

• Class Loss: The training class loss shows a consistent reduction from 1.6252 in epoch 1 to 
0.5540 in epoch 20, indicating improvements in the model’s classification accuracy. 

• DFL Loss: The DFL loss reduces from 1.2131 in epoch 1 to 1.0549 in epoch 20, reflecting 
gradual refinement in the model's distribution-based predictions. 
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Validation Loss: 
 

• Box Loss: The validation box loss 
decreases from 1.3202 in epoch 1 to 
0.8132 in epoch 20, indicating improved 
generalization as the model trains. 

• Class Loss: Validation class loss declines 
from 1.8594 in epoch 1 to 0.6478 in epoch 
20, showing the model is better at 
classifying objects in unseen data. 

• DFL Loss: Validation DFL loss also drops 
from 1.6829 in epoch 1 to 1.1142 in epoch 
20, suggesting that the model is 
successfully learning to predict object 
distributions more effectively. 

 

Performance Metrics: 
 

• mAP50 (B): The mAP at 50% IoU 
increases from 0.5143 in epoch 1 to 
0.8919 in epoch 20, reflecting better 
detection accuracy. 

• mAP50-95 (B): mAP at 50-95% IoU 
improves from 0.3234 in epoch 1 to 0.7288 
in epoch 20, indicating the model’s 

improved performance across a range of 
IoU thresholds. 

• Precision (B): Precision rises significantly 
from 0.5679 in epoch 1 to 0.8972 in epoch 
20, indicating that the model is getting 
much better at correctly identifying               
objects. 

• Recall (B): Recall also improves from 
0.4982 in epoch 1 to 0.8272 in                 
epoch 20, suggesting a reduction in false 
negatives. 

 
Yolov11-i model: Over the 20 epochs, the 
model demonstrates steady improvement in all 
critical areas: Losses: Both training and 
validation losses consistently decrease, 
indicating that the model is effectively learning 
and generalizing. Metrics: mAP, precision, and 
recall all show substantial gains, suggesting the 
model's increasing accuracy in detecting and 
classifying objects. Learning Rate: The gradual 
decrease in learning rate suggests the model is 
stabilizing its learning process, allowing for more 
refined training as it progresses as shown in       
Fig. 7. 

 

 
 

Fig. 7. Yolov11-i training result 
 

3.4 Loss Metrics 
 

Training Loss: 
 

• Box Loss: The training box loss decreases steadily from 1.0498 in epoch 1 to 0.7242 in epoch 
20, indicating that the model is progressively refining its ability to predict bounding boxes 
accurately. 
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• Class Loss: The class loss also shows a 
consistent reduction from 1.68318 in epoch 
1 to 0.5594 in epoch 20, reflecting 
improved classification accuracy as the 
model trains. 

• DFL Loss: The DFL loss decreases from 
1.2726 in epoch 1 to 1.07337 in epoch 20, 
suggesting ongoing improvements in the 
model's ability to predict the distribution of 
object centres. 

 

Validation Loss: 
 

• Box Loss: The validation box loss 
decreases from 1.49338 in epoch 1 to 
0.8147 in epoch 20, indicating the model is 
improving in generalization, with better 
bounding box predictions on unseen data. 

• Class Loss: Validation class loss reduces 
from 3.93951 in epoch 1 to 0.6588 in 
epoch 20, showing the model’s enhanced 
ability to classify objects correctly in 
validation samples. 

• DFL Loss: The validation DFL loss drops 
from 1.87535 in epoch 1 to 1.14352 in 
epoch 20, suggesting that the model's 
distribution prediction capability is 
improving as it trains on more data. 

 

Performance Metrics: 
 

• mAP50 (B): The mAP at 50% IoU 
improves from 0.32562 in epoch 1 to 

0.8846 in epoch 20, reflecting significant 
improvements in detection accuracy over 
time. 

• mAP50-95 (B): The mAP at 50-95% IoU 
rises from 0.18964 in epoch 1 to               
0.72672 in epoch 20, showing that the 
model is becoming more robust in 
detecting objects across varying levels of 
IoU. 

• Precision (B): Precision increases from 
0.40676 in epoch 1 to 0.88615 in epoch 20, 
indicating that the model is getting much 
better at identifying objects correctly and 
reducing false positives. 

• Recall (B): Recall improves from 0.46699 
in epoch 1 to 0.82067 in epoch 20, 
showing a reduction in false negatives and 
an increase in the model's ability to detect 
all relevant objects. 

 
Yolov11-x model: Throughout the 20 epochs, 
the model demonstrates significant improvement 
in all key metrics. Both training and validation 
losses consistently decrease, indicating effective 
learning and generalization. mAP, precision, and 
recall show substantial gains, reflecting the 
model's increasing accuracy and ability to detect 
and classify objects. Additionally, the gradual 
decrease in the learning rate suggests that the 
model is nearing convergence, making                     
finer adjustments as it progresses as shown in 
Fig. 8. 

 

 
 

Fig. 8. Yolov11-x training result 
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3.5 Loss Metrics 
 
Training Loss: 
 

• Box Loss: The training box loss decreases steadily from 1.16451 in epoch 1 to 0.62205 in 
epoch 20, indicating continuous improvement in the model's ability to predict bounding boxes 
more accurately. 

• Class Loss: The class loss shows a consistent reduction from 1.82984 in epoch 1 to 1.10992 in 
epoch 20, reflecting a significant improvement in classification accuracy over time. 

• DFL Loss: The DFL loss decreases from 1.38319 in epoch 1 to 0.88079 in epoch 20, 
demonstrating the model’s ongoing refinement in predicting distribution-based object centre 
predictions.

 
Validation Loss: 
 

• Box Loss: The validation box loss decreases from 1.62893 in epoch 1 to 0.81976 in epoch 20, 
suggesting that the model is generalizing well and making better bounding box predictions on 
unseen data. 

• Class Loss: Validation class loss decreases from 7.77179 in epoch 1 to 0.69336 in epoch 20, 
indicating that the model has improved in classifying objects correctly in the validation set. 

• DFL Loss: The validation DFL loss drops from 2.1399 in epoch 1 to 1.1616 in epoch 20, 
reflecting improved predictions of object distributions in the validation phase. 

 
Performance Metrics: 
 

• mAP50 (B): The mAP at 50% IoU improves significantly from 0.22541 in epoch 1 to 0.88079 in 
epoch 20, highlighting a strong improvement in detection accuracy as the model trains. 

• mAP50-95 (B): The mAP at 50-95% IoU shows substantial improvement from 0.37487 in epoch 
1 to 0.87436 in epoch 20, demonstrating that the model is improving across different IoU 
thresholds, enhancing its detection capabilities. 

• Precision (B): Precision increases from 0.24387 in epoch 1 to 0.70684 in epoch 20, suggesting 
a reduction in false positives and a significant improvement in correctly identifying objects. 

• Recall (B): Recall improves from 0.12998 in epoch 1 to 0.70684 in epoch 20, indicating a 
reduction in false negatives and that the model is becoming better at detecting all relevant 
objects. 

 
4. PREDICTION 
 
The performance of different YOLOv11 model variants was evaluated on the USPS-Merge-38 dataset 
using a total of 205 test images. The evaluation focused on key metrics, including inference speed (in 
milliseconds for both GPU and CPU), model parameters (in millions), and FPS (Frames Per Second) 
for GPU execution. 

 
Table 2. Prediction results on custom models. 

 

Custom Mode Speed GPU (ms) Speed CPU (ms) Params (M) GPU FPS 

yolov11-n 5.86 154.71 2.59 170.74 
yolov11-s 0.89 347.36 9.43 1120.46 
yolov11-m 2.32 889.04 20.06 430.40 
yolov11-i 3.28 1118.48 25.31 304.91 
yolov11-x 4.17 2349.83 56.88 240.03 

 
The results are summarized as follows: 
YOLOv11-n achieved the highest GPU                     
FPS of 170.74, with a relatively low GPU 
inference time of 5.86 ms, though it comes with 

2.59 million parameters. In contrast, its CPU 
inference time was significantly higher at 154.71 
ms. 
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YOLOv11-s exhibited the fastest inference on 
GPU with 1120.46 FPS, but its CPU inference 
time was the highest among the tested models at 
347.36 ms. It has 9.43 million parameters. 
 
YOLOv11-m demonstrated a balanced 
performance, with 430.40 FPS on GPU and an 
inference time of 2.32 ms for GPU, along with a 
CPU inference time of 889.04 ms. It contains 
20.06 million parameters. 
 
YOLOv11-i showed an FPS of 304.91 on GPU, 
with a 3.28 ms GPU inference time. However, it 
faced a 1118.48 ms delay on CPU, and its model 
size was 25.31 million parameters. 
 
YOLOv11-x had the largest model size with 
56.88 million parameters and the lowest GPU 
FPS of 240.03. Its GPU inference time was 4.17 
ms, and the CPU inference time was 2349.83 ms. 
 

5. CONCLUSION 
 
This research investigated the performance of 
various YOLOv11 model variants (n, s, m, i, x) 
for object detection on the USPS-Merge-38 
dataset, which includes four distinct vehicle 
classes: FedEx, UPS, USPS-Truck, and Other-
Vehicles. Our study aimed to evaluate the trade-
offs between model complexity, accuracy, and 
inference speed in real-world logistics and 
delivery tracking scenarios. 
 
The results highlight that smaller YOLOv11 
variants, such as YOLOv11-n and YOLOv11-s, 
deliver superior inference speed, making them 
ideal candidates for real-time applications where 
speed is critical. On the other hand, larger 
variants, like YOLOv11-i and YOLOv11-x, offer 
improved accuracy and recall, making them 
suitable for tasks that prioritize detection quality 
over processing time. The findings underscore 
the adaptability of the YOLOv11 architecture, 
demonstrating that different model configurations 
can be selected depending on specific 
application requirements, balancing between 
computational resources and performance 
outcomes. 
 

Furthermore, the model evaluation metrics, 
including mAP, precision, recall, and inference 
speed, provide a comprehensive understanding 
of the strengths and limitations of each variant. 
The performance of the models was rigorously 
evaluated across different hardware 
configurations, with GPU and CPU inference 
times measured for each model variant. These 

evaluations offer valuable insights into the 
practical deployment of YOLOv11 in real-world 
logistics systems, where both accuracy and 
efficiency are paramount. 
 

In conclusion, the YOLOv11 family of models 
presents a versatile solution for object detection 
tasks, with each variant offering distinct 
advantages based on the desired balance 
between speed and accuracy. This research 
contributes to the growing body of knowledge on 
real-time object detection in logistics and delivery 
tracking, providing a benchmark for selecting the 
optimal YOLOv11 model based on specific 
operational requirements. 
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